
Electrical Circuit Controller

Reference Guide
Version 1.0

John Hnidec Software

johnhnidecsoftware.com

john.hnidec+unity@gmail.com

http://johnhnidecsoftware.com
mailto:john.hnidec+unity@gmail.com

Introduction	
3
Flashlight Network	
3
Household Network	
3
City Network	
3

What is included with ECC?	
4
What are Modules?	
4

Network Module	
4
Power Source Module	
4
Circuit Module	
4
Power Consumer Module	
5

Getting Started	
5
Scriptable Objects - The Heart of Everything	
9

Network Scriptable Object	
9
Power Source Scriptable object	
9
Circuit Scriptable Object	
10
Power Consumer Scriptable Object	
10

Setting Up Your Network	
11
Unity Custom Editor	
12
Properties and Methods	
13
Events	
15
Runtime Creation	
16
Custom Metadata Fields	
17
Creating New Modules	 17

Electrical Circuit Controller
Sincere thanks for your purchase of Electrical Circuit Controller (ECC) for Unity. We are a small
software development team here in Australia and it is only with your valued support and
patronage that we can continue to enhance and expand our line of products. We genuinely
appreciate your interest and of course are happy to assist in any way we can.

Introduction
So then, what is ECC? It is a set of simple yet extremely powerful classes, thoughtfully crafted to
deliver some very deep capability with regard to creating, controlling and switching any kind of
electrical network. By simply plugging in any of the supplied Scriptable Objects you can easily
construct electrical networks complete with Power Supplies, Circuits and Power Consumers
(more on these later). By its very nature ECC is highly configurable, so swapping out a AAA
battery Power Supply and replacing it with a car battery is literally a line of code (or two clicks in
the custom editor).

Some good news too, you absolutely don’t need to know anything about how power circuits
work, what a Watt is, what the difference between a Volt and an Amp is and so on. All of that
complexity is hidden away (as it should be), but if you do know about such things and you know
who George Ohm is, then that’s great too!

It’s also important to note what ECC is not. It is not a simulator of electronics and it does not
contain any graphical assets. Some extremely complicated electrical concepts are simplified here,
for example the Loss property of a circuit is expressed as a simple percentage but in the real
world that value would depend on an enormous number of factors and conditions.

Possibly the above explanation of what ECC is all about still has you scratching your head. By
way of examples then, here are some of the (unlimited) use-cases that ECC could be applied to…

FLASHLIGHT NETWORK

Technically speaking (not visually or graphically) what makes up a flashlight? It needs a power
source, a switch, a bulb of some sort and maybe some small microprocessor. If your game
includes a flashlight, then you can simply create an electrical network for it and instantly have
access to how much power is left in the batteries, is it switched on or not, does the little
microprocessor draw power even when the flashlight is off, and so on and so on.

HOUSEHOLD NETWORK

A house is very different to a flashlight, but ECC can create an electrical network for it just as
easily as for a flashlight. A house also needs a power supply, some circuits and some consumers
of that power. In this example we would use a 240 V power supply (at least here in Australia
anyway), perhaps two or three circuits (maybe each circuit has different amperage), and a bunch
of appliances like ovens, toasters, hair dryers, washing machines and so on. Believe it or not,
setting all that up in ECC is quick and easy, and once done your game would have fully access to
all the Amps, Watts, switches, circuit load and more for the entire household.

CITY NETWORK

What the heck, how can ECC manage something that large? Well, each module in ECC (more on
modules later) can have multiple submodules each doing its own thing. A city network then could
be thought of as lots of houses (or factories and buildings), all on different power supplies, all with
differing power requirements, but still all contained within a single larger umbrella network. Your
game could then intelligently manage power to each of these city blocks, houses and television
screens.

Remember too, each of these examples are easily configured inside the custom ECC editor.

What is included with ECC?
A set of scripts located in the ECC Scripts folder that contain the core logic and functionality that
enables ECC to do its thing.

A set of modules located in the ECC Modules folder that contain many pre-configured Scriptable
Objects. These modules are what drives the logic and operation of ECC and include Networks,
Power Supplies, Circuits and Power Consumer modules. It is very straightforward to create your
own modules or to simply change the ones that are already there.

A custom editor for configuring your network inside the Unity editor. Easily click to add and
delete any of the various modules and sub-modules.

A simple demo project showcasing some of the ECC fundamentals.

Full source code is included, use to understand how it all works or to modify and enhance to suit
your own requirements.

This Reference Guide, lovingly written and hand-crafted just for you :)

What are Modules?
We’ve referred to modules several times already in this document, so now is the time to explain
them fully.

ECC is hierarchical in nature, and each level of the hierarchy is a module. The top level of this
structure is one or more Networks. A Network has one or more Power Sources. A Power Source
has one or more Circuits. A Circuit has one or more Power Consumers.

When all modules are logically joined together a fully operational electrical network is created.

Each module is a Unity Scriptable Object and therefore swapping out a Power Source with a
different one, or adding a new Power Consumer to your network can be simply configured in the
editor, or via code if need be.

NETWORK MODULE

This is the overarching container for everything else. In and of itself it doesn’t do too much but it
does end up holding all of the other functionality. Examples of a Network would include a
flashlight, a house, a digital watch, a small village, a factory, a computer and so on.

POWER SOURCE MODULE

This is the thing that supplies power to your network. Each Power Source can be configured with
Volts and Amps (among other things). Examples of a Power Source would include AA battery,
AAA battery, 2 x D Cell batteries in Series, 120 Volt AC, solar panel and so on.

CIRCUIT MODULE

A circuit is what distributes the power (the Power Source) to all of the devices on the circuit. A
circuit has Loss and an Amperage Rating (how much load the circuit can provide). If the load on
the Circuit is exceeded it will switch itself off, a bit like a circuit breaker in a house does. Examples
of a Circuit would include a 20 Amp domestic circuit, 100 Amp industrial circuit, 500 milliamp usb
charger circuit and so on.

POWER CONSUMER MODULE

The end of the road is the device on the circuit, the Power Consumer. It is the entity that
consumes the power and generally is the object of interest in your game. A Power Consumer has
Watts and Parasitic Drain (how much power is consumed even when the device is off). Examples
of a Power Consumer would include a lamp, a kettle, a microprocessor, an LED bulb, a huge
factory machine, or anything that consumes power really.

Getting Started
Let’s work through each step of creating a Flashlight. We’ll be using the custom Unity editor and
we’ll be using existing modules that come with ECC. At the end of this you’ll see your Flashlight
network inside the editor and you will be able to switch it on or off and observe its power usage.

Create an empty GameObject in a new or existing project.

Click the Add Component button and add Electrical Circuit Controller script. You should now see
the custom editor ready to configure your network.

Click the little plus sign next to Networks and choose the Flashlight network from the Unity field.

Click the OK button, then select the Flashlight you just added from the dropdown Networks field.

Now that a Network has been added, you will be able to see the Power Sources field. Click the
little plus sign next to Power Sources and choose AAA Battery.

Click the OK button, then select the AAA Battery you just added form the dropdown Power
Sources field.

Now that a Power Source has been added, you will be able to see the Circuits field. Click the little
plus sign next to Circuits and choose Basic Circuit.

Click the OK button, then select the Basic Circuit you just added form the dropdown Circuits field.

Now that a Circuit has been added you will be able to see the Power Consumers field. Click the
little plus sign next to Power Consumers and choose White LED.

Click the OK button and repeat the above step, this time adding a Small Microprocessor Power
Consumer.

All going well, that’s it, you have now created a fully working Flashlight Network. Let’s check and
make sure you’re all good, and quickly summarise what we’ve just done. Make sure your Network
looks like this:

We we’ve got a Network called Flashlight, it contains a AAA Battery Power Source, with one
Circuit, a White LED and a Small Microprocessor.

You can see a summary of your Network in the custom editor, and right now you can also switch
the various modules OFF and ON. Run your game now and see what happens.

You should all modules switched on and running, as indicated by the green highlighting. At the
very bottom of the display you can see the drain on the battery and the load on the circuit. Try
switching some of the modules OFF and see what happens.

Notice that turning the Basic Circuit OFF also turned off the White LED and Microprocessor even
though they are both switched ON. Well, that’s because they’re not ON because there’s no power
on the circuit. Think of a lamp on your desk, it might be switched on but if it’s not plugged in it
won’t work.

Interestingly, if you turn everything on and then turn off the White LED and the Small
Microprocessor you will still see some usage on the Network. Why is this? Well, our Small
Microprocessor was configured with Parasitic Drainage which means it will still use power even
when it’s switched off. Think of your television, even when you switch it off it is still consuming
power.

Scriptable Objects - The Heart of Everything
If you’re wondering what on earth a Scriptable Object is then it’s probably worthwhile having a
snoop around the Unity help and forums for more information. You don’t really need to
understand them to use ECC though, other than to say that all the modules you used in the
previous example (the Network, the AAA Battery, the Circuit, the White LED and the Small
Microprocessor) are all Scriptable Objects, located in the ECC/Modules folder.

You can create your own brand new Scriptable Objects (Modules) based on your own
requirements. For example you could copy the AAA Battery module, rename it to D Cell, change
the Voltage or Amps value, and as simple as that you’ve now got a brand new Power Source.

NETWORK SCRIPTABLE OBJECT

Name: Meaningful name for the object

Description: Meaningful description for the
object

Representation: Sprite image for the object

Custom String: Metadata string field used to
represent whatever you want.

Custom Float: Metadata float field used to
represent whatever you want.

Custom Int: Metadata integer field used to
represent whatever you want.

POWER SOURCE SCRIPTABLE OBJECT

Name: Meaningful name for the object

Description: Meaningful description for the
object

Representation: Sprite image for the object

Custom String: Metadata string field used to
represent whatever you want.

Custom Float: Metadata float field used to
represent whatever you want.

Custom Int: Metadata integer field used to
represent whatever you want.

Volts: Voltage of the Power Source

Amp Hours: Capacity of the Power Source

CIRCUIT SCRIPTABLE OBJECT

Name: Meaningful name for the object

Description: Meaningful description for the
object

Representation: Sprite image for the object

Custom String: Metadata string field used to
represent whatever you want.

Custom Float: Metadata float field used to
represent whatever you want.

Custom Int: Metadata integer field used to
represent whatever you want.

Loss: Loss on the Circuit

Amperage Rating: Load capacity of the Circuit

POWER CONSUMER SCRIPTABLE OBJECT

Name: Meaningful name for the object

Description: Meaningful description for the
object

Representation: Sprite image for the object

Custom String: Metadata string field used to
represent whatever you want.

Custom Float: Metadata float field used to
represent whatever you want.

Custom Int: Metadata integer field used to
represent whatever you want.

Watts: How much power this Power
Consumer consumes

Parasitic Drain: Random value between Min
and Max representing the amount of power consumed even when the Power Consumer is
switched off.

Setting Up Your Network
As mentioned earlier, ECC is super flexible and can be configured in multiple different ways
depending on your requirements.

You need at least one ElectricalCircuitController component on a GameObject (or in code)
somewhere in your Project. From there though it’s up to you. That single instance could be used
to add multiple Networks and to control everything from a single, central location. Alternatively,
you could have multiple instances of ElectricalCircuitController, with each instance having one (or
more) Networks.

There are no real rules, and performance wise it won’t make any difference (other than theoretical)
how you slice and dice your setup.

• A single ElectricalCircuitController with a single Network, single Power Source and single
Circuit makes sense for separate self-contained objects like a flashlight or a billboard sign.

• A single ElectronicCircuitController with multiple Networks, single Power Source and single
Circuit makes sense for similar but unrelated objects like a player’s flashlight, his digital
watch, his mobile phone and his portable charger.

• A single ElectronicCircuitController with single or multiple Networks, multiple Power Sources
and multiple Circuits makes sense for larger groupings of related objects like a city office
block, an apocalypse survivor settlement or a fleet of electric vehicles.

Multiple instances of ElectricalCircuitController could work equally well for each of the above
scenarios, the design choice really depends on the objective.

Importantly, the pattern and complexity of the Network design doesn’t necessarily equate to the
physical size of the object you are representing. Imagine you wanted to control a digital watch at a
deeper level than just battery life. It may look something like this:

Digital Watch Network

Module Type Module Name Purpose

Network Digital Watch The top level container

Power Source CR2032 Battery Main power supply for the watch

Circuit Main Circuit Controls most of the watch electronics

Power Consumer LED Screen Digital display for the watch

Power Consumer GPS Sensor Tracks GPS location, might be high power usage

Power Consumer Health Sensor Tracks heart rate and step count

Power Source Solar Panel Charges the battery

And so on and so on…

Unity Custom Editor
A fundamental design principle of ECC was to make sure it’s dead easy to setup and use. We are
not all gun developers, and in fact many of us are more adept at design and graphical creativity
than with C# classes, coding and software best practice. The actual code and logic driving ECC is
not overly complicated, rather, the way it all plugs together quickly and easily is what makes the
asset most valuable.

An enormous step towards this simplicity is the custom editor provided with ECC. As soon as you
add the ElectronicCircuitController component to a GameObject in the editor you will see it.

1. Time related values controlling how
often ECC should refresh itself, and at
what timescale it should run at.

2. Module drop-downs to select
Networks, Power Sources, Circuits and
Power Consumers.

3. Module add/remove buttons to add
new, or remove existing, Networks,
Power Sources, Circuits and Power
Consumers.

4. The status of the entire ECC
network, not just the selected Network
and not just what is selected in the
drop-downs above. Green means
operating, red means switched off and/
or not operating.

5. Switches to turn ON or OFF each of
the Modules separately. A module can
be switched ON but still may not be
operating because there is no power or
the level above it is not switched on.
Think of a desk lamp, it may be
switched on but if it’s not plugged in it
won’t work.

6. Electrical usage for the entire ECC
network, not just the selected Network
and not just what is selected in the
drop-downs above. For Power Sources
it displays the used and remaining
Watts. For Circuits it displays Load
amount and percentage. If a Circuit is
overloaded it will switch itself off. 

Properties and Methods
The main (and only) script you need to add to your project is the ElectricalCircuitController script
located in the ECC/Scripts folder.

Name Description

ElectricalCircuitController

RefreshRate How often should internal calculations be applied

0 = every frame, 0.5 = half second, 1 = second etc

TimeMultiplier How much faster than “real time” should the controller
run. 1 = real time, 5 = 5x faster, 50 = 50 times faster
etc

FirstNetwork() Returns the first NetworkObject

NetworkCount() Returns the number of Networks

NetworkByName(string name) Returns the first NetworkObject with the given name

NetworkByIndex(int index) Returns the NetworkObject at the given index

FirstPowerSource(NetworkObject network) Returns the first PowerSourceObject for the given
network

PowerSourceCount(NetworkObject network) Returns the number of PowerSources for the given
network

PowerSourceByName(NetworkObject network,
string name)

Returns the first PowerSourceObject with the given
name for the given network

PowerSourceByIndex(NetworkObject network,
int index)

Returns the PowerSourceObject at the given index for
the given network

FirstCircuit(PowerSourceObject powerSource) Returns the first CircuitObject for the given
powerSource

CircuitCount(PowerSourceObject powerSource) Returns the number of Circuits for the given
powerSource

CircuitByName(PowerSourceObject
powerSource, string name)

Returns the first CircuitObject with the given name for
the given powerSource

CircuitByIndex(PowerSourceObject
powerSource, int index)

Returns the CircuitObject at the given index for the
given powerSource

FirstPowerConsumer(CircuitObject circuit) Returns the first PowerConsumerObject for the given
circuit

PowerConsumerCount(CircuitObject circuit) Returns the number of PowerConsumers for the given
circuit

PowerConsumerByName(CircuitObject circuit,
string name)

Returns the first PowerConsumerObject with the given
name for the given circuit

PowerConsumerByIndex(CircuitObject circuit, int
index)

Returns the PowerConsumerObject at the given index
for the given circuit

Base Module Properties
(all modules inherit these properties)

string Name Name of the module

string Description Description of the module

Sprite Representation Sprite of the module

string CustomString General purpose string field

float CustomFloat General purpose float field

int CustomInt General purpose int field

NetworkObject

bool SwitchedOn Switch off and on

Network Network Module

PowerSources List of PowerSourceObjects

Operating() Returns true if powered and switched on

PowerSourceObject

bool SwitchedOn Switch off and on

PowerSource PowerSource Module

PowerSource.Volts Volts value

PowerSource.AmpHours AmpHours value

Circuits List of CircuitObjects

HasPower() Returns true if powered

Operating() Returns true if powered and switched on

AmpHoursUsed() Returns the number of Amp Hours used

AmpHoursRemaining() Returns the number of Amp Hours remaining

CircuitObject

bool SwitchedOn Switch off and on

Circuit Circuit Module

Circuit.Loss Loss value

Circuit.AmperageRating AmperageRating value

PowerConsumers List of PowerConsumerObjects

HasPower() Returns true if powered

Operating() Returns true if powered and switched on

CapacityWatts() Returns the circuit capacity in Watts

LoadWatts() Returns the circuit load in Watts

PowerConsumerObject

bool SwitchedOn Switch off and on

Events
1. CircuitOverloaded

Triggers when a circuit is turned off (tripped) due to capacity overload

Example how to subscribe

Example how to use

PowerConsumer PowerConsumer Module

PowerConsumer.Watts Number of Watts consumed value

PowerConsumer.ParasiticDrainMIn Minimum parasitic drain value

PowerConsumer.ParasiticDrainMax Maximum parasitic drain value

HasPower() Returns true if powered

Operating() Returns true if powered and switched on

ParasiticDrain() Returns the ParasiticDrain value

Runtime Creation
Everything that can be done in the custom editor at design time can be equally performed via
code at runtime. Although it is arguably more complicated to do so, if you need to you can.
Remember too if might be easier to create some ECC Prefabs and just instantiate them at runtime
rather than rolling up your sleeves and digging into native C#.

The only real challenge with scripting a fully runtime enabled solution is the process of finding and
loading the correct Scriptable Objects. That is beyond the scope of this reference guide but I’m
comfortable in assuming that if you’re going down the C# route you will be able to come up with a
way to identify and load all the goodies you need.

One last time, it is strongly recommended to use the custom editor or prefabs wherever possible,
the C# scripting solution should only be when completely necessary for some reason.

Having said all that, here is an extract of a simple example to create the Flashlight network
mentioned earlier. This script is also available in the ECC/Demo/Scripts folder called
SampleECCRuntimeCreation.cs. This script doesn’t actually do anything and it doesn’t actually
load the Scriptable Objects, that’s left as an exercise for the reader :)

Custom Metadata Fields
Back in the Scriptable Objects section of this reference guide there was mention of the custom
metadata fields CustomString, CustomFloat and CustomInt. So what exactly are these for? They
are general purpose fields to be used by you (or your developers) to add meaningful attributes to
the Module.

For example, one of the Power Consumer Modules
included with ECC is a White LED. What actually makes it
white though, it’s not really an LED and it doesn’t really
have a color. Looking at the Scriptable Object you will see
the string “White” in the CustomString field. That alone
doesn’t do anything, but, in your game code and logic it is
a field that can be interpreted and used.

Your game may have white, red, green and blue LED’s and
in ECC they will identical except for the CustomString
values (or maybe a 0, 1, 2, 3 in the CustomInt field instead).
The colour of the real LED object in your game could be
driven by the value in one of the custom fields.

Of course these fields aren’t just used for color, anything
extra that needs to be referenced can be setup in the
custom field. For example you could store the brand model
“Luxeon DS25 LXHL-BW” in the CustomString field and
some unique ID in the CustomInt field.

Creating New Modules
We’ve been saying how great it is that you can just create your own new modules to use with
ECC, and it is, but how exactly do you do that?

An ECC module (Network, Power Source, Circuit, Power Consumer) is really just a standard Unity
Scriptable Object. The easiest way to create a new module is to duplicate one of the existing ones
and then change it.

For example, let’s say you want to create a new power source, a D cell battery. Navigate to the
Power Sources folder in your project’s ECC/Modules folder. Click on say the AAA Battery and
duplicate it (Ctrl+D on Windows, Cmd+D on Mac). Rename the newly created copy to “D Cell
Battery”, then in the Unity Inspector window change the Name, Description, Volts, Amp Hours etc
to whatever you need. That’s it, you now have a new D Cell Power Source.

Another way to create a new Module is to right click inside a folder in your Project Window, Select
Create, then select ECC, then select the module type you need (Network, Power Source, Circuit
or Power Consumer).

Finally, you could also click on the Unity Assets menu, then select Create, then select ECC and
choose Network, Power Source, Circuit or Power Consumer from the menu.

	Introduction
	Flashlight Network
	Household Network
	City Network

	What is included with ECC?
	What are Modules?
	Network Module
	Power Source Module
	Circuit Module
	Power Consumer Module

	Getting Started
	Scriptable Objects - The Heart of Everything
	Network Scriptable Object
	Power Source Scriptable object
	Circuit Scriptable Object
	Power Consumer Scriptable Object

	Setting Up Your Network
	Unity Custom Editor
	Properties and Methods
	Events
	Runtime Creation
	Custom Metadata Fields
	Creating New Modules

